Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: Is resting calcium responsible?
نویسندگان
چکیده
The increase in isometric twitch force observed in fast-twitch rodent muscles during or after activity, known universally as potentiation, is normally associated with myosin regulatory light chain (RLC) phosphorylation. Interestingly, fast muscles from mice devoid of detectable skeletal myosin light chain kinase (skMLCK) retain a reduced ability to potentiate twitch force, indicating the presence of a secondary origin for this characteristic feature of the fast muscle phenotype. The purpose of this study was to assess changes in intracellular cytosolic free Ca(2+) concentration ([Ca(2+)](i)) after a potentiating stimulus in mouse lumbrical muscle (37°C). Lumbricals were loaded with the Ca(2+)-sensitive fluorescent indicators fura-2 or furaptra to detect changes in resting and peak, respectively, intracellular Ca(2+) levels caused by 2.5 s of 20-Hz stimulation. Although this protocol produced an immediate increase in twitch force of 17 ± 3% (all data are n = 10) (P < 0.01), this potentiation dissipated quickly and was absent 30 s afterward. Fura-2 fluorescence signals at rest were increased by 11.1 ± 1.3% (P < 0.01) during potentiation, indicating a significant increase in resting [Ca(2+)](i). Interestingly, furaptra signals showed no change to either the amplitude or the duration of the intracellular Ca(2+) transients (ICTs) that triggered potentiated twitches during this time (P < 0.50). Immunofluorescence work showed that 77% of lumbrical fibers expressed myosin heavy chain isoform IIx and/or IIb, but with low expression of skMLCK and high expression of myosin phosphatase targeting subunit 2. As a result, lumbrical muscles displayed no detectable RLC phosphorylation either at rest or after stimulation. We conclude that stimulation-induced elevations in resting [Ca(2+)](i), in the absence of change in the ICT, are responsible for a small-magnitude, short-lived potentiation of isometric twitch force. If operative in other fast-twitch muscles, this mechanism may complement the potentiating influence of myosin RLC phosphorylation.
منابع مشابه
Brief Review Regulation of Contraction and Relaxation in Arterial Smooth Muscle
Intracellular calcium concentration ([Ca]i)-dependent activation of myosin light chain kinase and its phosphorylation of the 20-kd light chain of myosin is generally considered the primary mechanism responsible for regulation of contractile force in arterial smooth muscle. However, recent data suggest that the relation between [Ca], and myosin light chain phosphorylation is variable and depends...
متن کاملRegulation of contraction and relaxation in arterial smooth muscle.
Intracellular calcium concentration ([Ca2+]i)-dependent activation of myosin light chain kinase and its phosphorylation of the 20-kd light chain of myosin is generally considered the primary mechanism responsible for regulation of contractile force in arterial smooth muscle. However, recent data suggest that the relation between [Ca2+]i and myosin light chain phosphorylation is variable and dep...
متن کاملX-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers.
The phosphorylation of the myosin regulatory light chain (RLC) is an important modulator of skeletal muscle performance and plays a key role in posttetanic potentiation and staircase potentiation of twitch contractions. The structural basis for these phenomena within the filament lattice has not been thoroughly investigated. Using a synchrotron radiation source at SPring8, we obtained X-ray dif...
متن کاملRegulation of myosin light chain and phosphorylase phosphorylation in tracheal smooth muscle.
The activity of phosphorylase kinase and myosin light chain kinase can be regulated by calcium-calmodulin or cyclic AMP. Since phosphorylation of the 20,000dalton phosphorylatable light chain (P-light chain) of myosin may be involved in the regulation of contractile activity in smooth muscle, we examined the relationship between P-light chain phosphorylation, phosphorylase a formation, and isom...
متن کاملCatch Muscle Myorod Modulates ATPase Activity of Myosin in a Phosphorylation-Dependent Way
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. Myorod is an alternatively spliced product of the myosin heavy-chain gene that contains the C-terminal rod part of myosin and a unique N-terminal domain. The unique domain is a target for phosphorylation by gizzard smooth myosin light chain kinase (smMLCK)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 141 شماره
صفحات -
تاریخ انتشار 2013